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RECEIVE INDICATION OF ATTEMPT BY VIRTUAL
MACHINE TO MODIFY PAGING STRUCTURE — 321
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HAVE GIVEN VALUE
S 323
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FIG. 3
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CONFIGURE VIRTUAL MACHINE APPARATUS TO USE PAGING

STRUCTURE IDENTIFICATION (PSI) STORAGE LOCATION " 651

MODIFICATION MONITORING MECHANISM (E.G., SET CR3 LOAD
EXITING CONTROL)

|

CONFIGURE PSI STORAGE LOCATION MONITORING MECHANISM TO — 652
USE BLACKLIST INTERPRETATION (E.G., SET CONTROL TO ENABLE
BLACKLIST INTERPRETATION)

|

SPECIFY NUMBER OF PSI BLACKLIST VALUES (E.G., SPECIFY CR3 653
TARGET COUNT AS NUMBER N)

SPECIFY EACH OF CONFIGURED NUMBER OF PSI BLACKLIST

— 654
VALUES (E.G., SPECIFY FIRST N OF CR3 TARGET BLACKLIST
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FIG. 6
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1
PROCESSORS, METHODS, AND SYSTEMS
TO ENFORCE BLACKLISTED PAGING
STRUCTURE INDICATION VALUES

BACKGROUND

Embodiments relate to the field of processors. In particular,
embodiments relate to the field of processors that utilize
paging.

Many processors and systems support virtual memory and
paging. Paging may allow software to restrict and control
accesses by processes or tasks to sections of memory referred
to as pages. Paging may be used to create a separate or
independent virtual address space for each process or task.
This may be used to prevent one process or task from modi-
fying the memory of other processes or tasks.

Commonly, pages may be accessed through a paging struc-
ture hierarchy or set of paging structures, such as a page
directory and page tables. A page directory may have a num-
ber of page directory entries. Each page directory entry may
store an indication of (e.g., a pointer to) a page table. The page
table may represent a data structure used to map virtual
addresses to physical addresses. A process or task may access
the page table with a virtual address and use the page table to
determine a physical address of the data it secks. Each page
table may have a number of page table entries. Each page
table entry may store an indication of (e.g., a pointer to) the
physical address of a page.

Many processors have a control register that is used to store
information to locate the independent virtual address spaces
and/or the paging structures that are appropriate for each
process or task. For example, a page directory base register
(PDBR) may be used to store a page directory base and/or a
physical address of a page directory entry. When processes or
tasks are scheduled, when process or task switches occur, or
the like, the processes or tasks may modify the PDBR to store
that processes or tasks corresponding page directory base.

Commonly, the attempted modifications of the PDBR or
other control register are monitored for security purposes.
However, inefficient monitoring of the PDBR modifications
may tend to cause significant performance degradations.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

The invention may best be understood by referring to the
following description and accompanying drawings that are
used to illustrate embodiments of the invention. In the draw-
ings:

FIG. 1 is a block diagram of an embodiment of a virtual
machine apparatus that is suitable for implementing various
embodiments of the invention.

FIG. 2 is a block diagram of an embodiment of a virtual
machine apparatus.

FIG. 3 is a block flow diagram of an embodiment of a
method of determining whether or not to allow an attempt by
a virtual machine to modify paging structure identification
(PSI) storage location.

FIG. 4 is a block flow diagram of an embodiment of a
method of processing an instruction that attempts to modify
paging structure identification (PSI) storage location.

FIG. 5 is a block diagram of a detailed example embodi-
ment of a virtual machine apparatus.

FIG. 6 is a block flow diagram of an embodiment of a
method of configuring a virtual machine apparatus.

FIG. 7 is a block diagram of an embodiment of a CR3
control register.
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FIG. 8A is a block diagram illustrating both an exemplary
in-order pipeline and an exemplary register renaming, out-of-
order issue/execution pipeline according to embodiments of
the invention.

FIG. 8B is a block diagram illustrating both an exemplary
embodiment of an in-order architecture core and an exem-
plary register renaming, out-of-order issue/execution archi-
tecture core to be included in a processor according to
embodiments of the invention.

FIG. 9A is a block diagram of a single processor core,
along with its connection to the on-die interconnect network
and with its local subset of the Level 2 (L.2) cache, according
to embodiments of the invention.

FIG. 9B is an expanded view of part of the processor core
in FIG. 9A according to embodiments of the invention.

FIG. 10 is a block diagram of a processor that may have
more than one core, may have an integrated memory control-
ler, and may have integrated graphics according to embodi-
ments of the invention.

FIG. 11 shown is a block diagram of a system in accor-
dance with one embodiment of the present invention.

FIG. 12 shown is a block diagram of a first more specific
exemplary system in accordance with an embodiment of the
present invention.

FIG. 13 shown is a block diagram of'a second more specific
exemplary system 1300 in accordance with an embodiment of
the present invention.

FIG. 14 shown is a block diagram of a SoC in accordance
with an embodiment of the present invention.

FIG. 15 is a block diagram contrasting the use of a software
instruction converter to convert binary instructions in a source
instruction set to binary instructions in a target instruction set
according to embodiments of the invention.

DETAILED DESCRIPTION

In the following description, numerous specific details are
set forth (for example specific sequences of operations, logic
implementations, processor configurations, microarchitec-
tural details, logic partitioning/integration details, types and
interrelations of system components, and the like). However,
it is understood that embodiments of the invention may be
practiced without these specific details. In other instances,
well-known circuits, structures and techniques have not been
shown in detail in order not to obscure the understanding of
this description.

FIG. 1 is a block diagram of an embodiment of a virtual
machine apparatus 100 that is suitable for implementing vari-
ous embodiments of the invention. The virtual-machine appa-
ratus includes a plurality of virtual machines (VMs) 101, a
virtual machine monitor (VMM) 104, and platform hardware
105.

The platform hardware 105 may include that found in
desktop computers, laptop computers, handheld computers,
cellular phones, handheld devices, servers, network ele-
ments, set-top boxes, or other types of electronic devices. The
platform hardware includes atleast one processor 106, at least
one memory 109, and optionally one or more input and/or
output (I/0) devices 112. The processor may be any type of
processor capable of executing software. In some embodi-
ments, the processor may be a general-purpose processor
(e.g., of the type used in desktop, laptop, and like computers).
Alternatively, the processor may be special-purpose proces-
sor. Examples of suitable special-purpose processors include,
but are not limited to, network processors, communications
processors, cryptographic processors, graphics processors,
co-processors, embedded processors, digital signal proces-
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sors (DSPs), and controllers (e.g., microcontrollers), to name
just a few examples. Two or more processors, of either the
same or different type, may also optionally be used. The at
least one memory may include a hard disk, a floppy disk,
random access memory (RAM), read only memory (ROM),
flash memory, any other type of machine-readable medium
that is readable by the processor, or a combination thereof.
The memory may store instructions and/or data to perform
one or more embodiments disclosed elsewhere herein.

The virtual-machine apparatus also includes the virtual
machine monitor (VMM) 104. The VMM may be imple-
mented in software, firmware, hardware, or a combination
thereof. In the illustration, a single VMM is shown, although
in other embodiments two or more VMMs may be used. The
VMM may emulate and export a bare machine interface to
higher level software. Such higher level software may
include, for example, a standard or real-time operating sys-
tem (OS), a highly stripped down operating apparatus with
limited OS functionality, software that does not necessarily
include traditional OS functionality and/or facilities, etc. The
VMM may present the abstraction of the virtual machines
(VMs) 101 to other software (e.g., guest software running on
and/or within the VMs).

The illustrated embodiment includes a first virtual machine
(VM,) 101-1 through an N* virtual machine (VM,,) 101-N,
where the number N may be any appropriate number. Each
VM has its own guest software. As shown, the first VM may
have a first guest operating system (OS,) 102-1 and option-
ally a first guest application (APP,) 103-1, whereas the N
VM may have an N* operating system (OS,) 102-N and
optionally an N* guest application (APP,,) 103-N. The guest
software on each VM may expect to access at least some of the
platform hardware (e.g., the processor 106, the memory 109,
the I/O devices 112, etc.). The VMM may facilitate access by
the guest software to the platform hardware, while retaining
ultimate control over the platform hardware and/or over cer-
tain events (e.g., interrupts) to help provide proper operation
of the guest software and to help provide protection from and
between the guest software.

The VMM may be said to run in root operation mode,
whereas the VM (e.g., the guest software) may be said to run
in non-root operation mode. The VM and/or the non-root
operation mode are less privileged than the VMM and/or the
root operation mode. The VMM may be protected from all
guest software. The guest software in a VM may not need to
know that the VMM exists and/or that it is sharing the plat-
form hardware with other VMs. The VMM may isolate the
guest software stacks for the different VMs from one another.
The VMM may also take over control when certain types of
events occur.

Transitions into VM operation and/or the transfer of con-
trol from the VMM to the VM (e.g., to guest software) is
referred to as a VM entry. In one embodiment, a VM entry is
achieved by executing a special instruction, although this is
not required. Transitions from VM operation back to VMM
operation and/or the transfer of control from the VM to the
VMM is referred to herein as a VM exit. Potential causes of
VM exits include, but are not limited to, certain types of
privileged exceptions, platform events, or virtualization
events. As will be explained further below, in some embodi-
ments a VM exit may be caused by an illegal attempt to
modify a control register. In one embodiment, when a VM
exit occurs, control is passed to the VMM at a specific entry
point (e.g., an instruction pointer value), for example indi-
cated in a virtual machine control structure (VMCS) 110. In
another embodiment, control is passed to the VMM after
vectoring through a redirection structure. Alternatively, any
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4

other suitable mechanism may be used to transfer control
from the VM or guest software to the VMM.

Referring again to FIG. 1, the memory stores at least one
virtual machine control structure (VMCS) 110. The VMCS
may control certain aspects associated with the operation of
the virtual-machine apparatus (e.g., certain aspects of VM
operation and/or transitions between VM operation and
VMM operation). It is to be appreciated that there are many
different possible ways to implement the VMCS. In some
embodiments, a different VMCS may be used for each dif-
ferent VM, or in other embodiments a VMCS may be used for
multiple VM. In some embodiments, a different VMCS may
be used for each different logical or virtual processor within a
VM, or in other embodiments a VMCS may be used for
multiple logical or virtual processors and/or multiple VMs.
Other examples are also contemplated.

The processor has a set of one or more control registers 107
to control certain aspects associated with the operation of the
processor. As shown, in some embodiments, the control reg-
isters may include a page directory base register (PDBR) 108.
The PDBR is operable to store paging structure identification
information in the form of a page directory base. Alterna-
tively, the paging structure identification information and/or
page directory base may be stored in another location, such
as, for example, in the memory 109. In some embodiments,
the page directory base and/or the paging structure identifi-
cation information may provide a point of entry into a paging
structure and/or hierarchical set of paging structures 111 in
the memory 109.

FIG. 2 is a block diagram of an embodiment of a virtual
machine apparatus 200. In some embodiments, the virtual
machine apparatus of FIG. 2 may be implemented within the
virtual machine apparatus of FIG. 1. In such embodiments,
any of the features and options described above for FIG. 1
may optionally be used with the virtual machine apparatus of
FIG. 2. Alternatively, the virtual machine apparatus of F1IG. 2
may be included within a similar or an entirely different the
virtual machine apparatus than the one shown in FIG. 1.

The virtual machine apparatus 200 includes a virtual
machine (VM) 201. In some embodiments, the VM may
attempt to modify 215 a paging structure identification (PSI)
storage location 208, such as, for example, a page directory
base register (PDBR). For example, when a process (e.g., an
operating system task) is scheduled the VM may attempt to
execute an instruction to store a value (e.g., specified or
otherwise indicated by an operand of the instruction) in the
PSI storage location. In some embodiments, the value may
correspond to the process that is attempting to execute the
instruction (e.g., the value may indicate a paging directory or
other paging structure that corresponds to the process). In
some embodiments, the PSI storage location may optionally
be included within a set of control registers 207 of a processor
206. Alternatively, the PSI storage location may be included
elsewhere (e.g., within a configuration space of the processor,
within memory, within a VMCS, etc.).

A PSI blacklist enforcement logic 216 may notice,
observe, intercept, or otherwise receive an indication of the
attempt by the VM to modify 215 the PSI storage location
208. The PSI blacklist enforcement logic may be operable to
determine whether or not to allow the attempt by the VM to
modify the PSI storage location. The PSI blacklist enforce-
ment logic is coupled or otherwise in communication with a
set of one or more PSI blacklist values 217. As shown, in the
illustrated embodiment, the set of PSI blacklist values may
include a first PSI blacklist value 217-1 through an Nth PSI
blacklist value 217-N, where the integer N may have any
value appropriate for the particular implementation. Com-
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monly, the number N is on the order of tens or less and/or is
less than a number of processes in the virtual machine appa-
ratus (e.g., commonly on the order of a hundred or more). In
various example embodiments, the number N may range
from about 1 to about 20 inclusive, or from about 1 to about 10
inclusive, or from about 1 to about 4 inclusive, although the
scope of the invention is not so limited. In some embodi-
ments, the number of the PSI blacklist values currently being
used (e.g., the magnitude of the integer N) may also option-
ally be stored and used by the PSI blacklist enforcement logic.
As shown, in some embodiments, the set of the one or more
PSI blacklist values 217, as well as the number of the PSI
blacklist values 218, may optionally be stored in one or more
virtual machine control structures (VMCS) 210, which may
be coupled or otherwise in communication with the PSI
blacklist enforcement logic.

In some embodiments, the PSI blacklist enforcement logic
216 may be operable to determine whether or not to allow the
attempt to modify 215 the PSI storage location 208 based at
least in part on a comparison of a value corresponding to the
attempt to modify the PSI storage location (e.g., the value
indicated by the operand of the instruction that is attempting
to modify the PSI storage location) with the set of the one or
more PSI blacklist values 217. For example, the comparison
may be made to determine whether or not the value matches
or equals one of the PSI blacklist values. If the optional
number of PSI blacklist values is specified as N, then only the
first N of the PSI blacklist values may be considered. In some
embodiments, the PSI blacklist enforcement logic may be
operable to allow the attempt to modify the PSI storage loca-
tion if the value does not equal or match any of the set of PSI
blacklist values. This may be done without a need to trap to
the VMM and/or induce a VM exit. If the optional number of
PSI blacklist values is specified as N equal to zero, then the
attempt to modify the PSI may be allowed regardless of the
value to be stored in the PSI storage location. In such cases,
the value may be written to or stored in the PSI storage
location.

Conversely, in some embodiments, the PSI blacklist
enforcement logic 216 may be operable to induce, request,
cause, or otherwise result in a trap to the VMM and/or a VM
exit if the value equals or matches any of the set of PSI
blacklist values 217. After trapping to the VMM, the VMM
may perform further processing (e.g., according to config-
ured policies or rules) in order to determine whether or not to
allow the attempt to modify 215 the PSI storage location 208.
For example, the VMM may inspect the process correspond-
ing to the attempted modification. If the VMM perceives the
process as being trustworthy, then the VMM may determine
to allow the attempted modification and/or the VMM may
potentially make the attempted modification itself. Alterna-
tively, if the VMM perceives the process as untrustworthy
and/or suspects that the process is attempting to do illegal
things, then the VMM may prevent the attempted modifica-
tion and/or kill the process gracefully. The VMM may option-
ally log such events. The PSI blacklist values may thus rep-
resent a set of values that the VM is not allowed to write or
store in the PSI storage location without prior monitoring and
approval from the VMM.

In some embodiments, the blacklisted values may repre-
sent physical addresses of paging structure identification and/
or page directory base for processes or tasks of interest for
closer monitoring purposes. For example, this may useful
when unsigned programs, unidentified programs, programs
from unknown sources, web browser processes, otherwise
untrusted programs, or the like, are about to run or are run-
ning. The paging structure identification and/or page direc-
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tory base for such types of processes may be added to the
blacklist values by a user or privileged software during runt-
ime. This may allow more close monitoring of the behavior of
these programs and allow attempted modifications of the PSI
storage location to be trapped to the VMM when they match
the blacklist. The VMM may then analyze the attempted
modification and determine based on various different crite-
ria, which do not limit the invention, whether or not to allow
the attempted modification.

In various embodiments, the PSI blacklist enforcement
logic may be implemented in hardware (e.g., integrated cir-
cuitry, transistors, etc.), firmware (e.g., microcode), software
(e.g., part of the VMM), or a combination thereof. In some
embodiments, the PSI blacklist enforcement logic may be
implemented in persistent on-die processor logic, for
example, hardware, firmware, or a combination thereof.

FIG. 3 is a block flow diagram of an embodiment of a
method 320 of determining whether or not to allow an attempt
by a virtual machine to modity paging structure identification
(PSI) storage location. In some embodiments, the operations
and/or method of FIG. 3 may be performed by and/or within
either of the virtual machine apparatuses of FIGS. 1-2. In such
embodiments, any of the features and options described
above for FIGS. 1-2 may optionally be used with the method
of FIG. 3 and/or any of the features and options described for
the method of FIG. 3 may optionally be used with the virtual
machine apparatuses of FIGS. 1-2. Alternatively, the opera-
tions and/or method of FIG. 3 may be performed by and/or
within a similar or an entirely different virtual machine appa-
ratus. Moreover, the virtual machine apparatuses of FIGS. 1-2
may perform operations and/or methods either the same as,
similar to, or entirely different than, those of FIG. 3.

Referring to the illustration, an indication of the attempt by
the VM to modify the PSI storage location to have a given
value is noticed, observed, intercepted, or otherwise received,
at block 321. In some embodiments, this may include receiv-
ing an indication of an attempt by the VM to execute an
instruction to store a value specified or otherwise indicated by
the instruction to the PSI storage location. For example, such
an attempt may be performed when a process (e.g., an oper-
ating system task) is scheduled on the VM, and the value may
correspond to a page directory or structure corresponding to a
virtual address space of the process. In some embodiments,
the indication of the attempt by the VM to modify the PSI
storage location may be received at PSI blacklist enforcement
logic.

A determination is made whether the given value matches
or equals any (of an optionally configured number) of PSI
blacklist values, at block 322. This may include comparing
the given value to each of the optionally configured number of
PSI blacklist values. In some embodiments, this may include
accessing the configured number of the set of the blacklisted
values, and comparing the given value with only the config-
ured number of the set of the blacklisted values. Allowing the
number of PSI blacklist values to be configured is optional
and not required.

Assuming that at least one PSI blacklist value is config-
ured, if the determination is that the given value matches or
equals any of the configured PSI blacklist values (i.e., “yes” is
the determination at block 322), then this may result in a trap
to the VMM and/or a VM exit at block 323. As previously
mentioned, the VMM may determine whether or not to allow
the attempted modification based on its configured policies or
rules. For example, if the VMM perceives the attempting
process as untrustworthy or suspects illegal or undesirable
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behavior, then the VMM may prevent the attempted modifi-
cation and in some cases may kill the attempting process
gracefully

Conversely, if the determination is that the given value does
not match or equal any of the configured PSI blacklist values
(ie., “no” is the determination at block 322), then the
attempted modification of the PSI storage location may be
allowed or permitted, at block 324. In some embodiments, if
zero PSIblacklist values are currently configured and/or if the
PSI blacklist enforcement mechanism is optionally turned
off, then the attempted modification of the PSI storage loca-
tion to the given value may also be allowed.

FIG. 4 is a block flow diagram of an embodiment of a
method 430 of processing an instruction that attempts to
modify paging structure identification (PSI) storage location.
In some embodiments, the operations and/or method of FIG.
4 may be performed by and/or within either of the virtual
machine apparatuses of FIGS. 1-2. In such embodiments, any
of'the features and options described above for FIGS. 1-2 may
optionally be used with the method of FIG. 4 and/or any of the
features and options described for the method of FIG. 4 may
optionally be used with the virtual machine apparatuses of
FIGS. 1-2. Alternatively, the operations and/or method of
FIG. 4 may be performed by and/or within a similar or an
entirely different virtual machine apparatus. Moreover, the
virtual machine apparatuses of FIGS. 1-2 may perform opera-
tions and/or methods either the same as, similar to, or entirely
different than, those of FIG. 4.

Referring to the illustration, the instruction is received, at
block 431. In some embodiments, the instruction may indi-
cate a given value as a source operand and indicate the PSI
storage location as a destination operand. The given value and
the PSI storage location may each be explicitly specified (e.g.,
through one or more fields) or otherwise indicated (e.g.,
implicitly indicated) by the instruction. The source operand
may identify a general-purpose register, memory location,
other storage location, or may be an immediate. In some
embodiments, the instruction may be received at a processor
or a portion thereof (e.g., an instruction decoder, an instruc-
tion queue, etc.).

The instruction may be decoded, at block 432. For
example, the instruction may represent a relatively higher-
level machine instruction or macroinstruction that may be
decoded by an instruction decoder into one or more lower-
level micro-operations, micro-code entry points, microin-
structions, or other relatively lower-level instructions or con-
trol signals.

Alternatively, rather than being decoded, the instruction
may be emulated, translated, morphed, interpreted, otherwise
converted, or a combination thereof (e.g., emulated and
decoded).

A determination may be made whether the given value
indicated by the instruction matches or equals any (of an
optionally configured number) of PSI blacklist values, at
block 433. This may include comparing the given value to
each of the optionally configured number of PSI blacklist
values. Allowing the number of PSI blacklist values to be
configured is optional and not required.

Assuming that at least one PSI blacklist value is config-
ured, if the determination is that the given value matches or
equals any of the configured PSI blacklist values (i.e., “yes”is
the determination at block 433), then this may result in a trap
to the VMM and/or a VM exit. As previously mentioned, the
VMM may determine whether or not to allow the attempted
modification based on its configured policies or rules. For
example, if the VMM perceives the attempting process as
untrustworthy or suspects illegal or undesirable behavior,
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then the VMM may prevent the attempted modification and in
some cases may Kkill the attempting process gracefully.

Conversely, if the determination is that the given value
indicated by the instruction does not match or equal any ofthe
configured PSI blacklist values (i.e., “no” is the determination
atblock 433), then the given value indicated by the instruction
may be written to or stored in the PSI storage location without
trapping to the VMM, at block 435. In some embodiments, if
zero PSIblacklist values are currently configured and/or if the
PSI blacklist enforcement mechanism is optionally turned
off, then the given value indicated by the instruction may also
be written to or stored in the PSI storage location. The store to
the PSI storage location may be accomplished by a write, a
load, a move, or other type of store operation. If desired, such
a store operation may also optionally be combined with other
types of operations performed by instructions known in the
arts.

FIG. 5 is a block diagram of a detailed example embodi-
ment of a virtual machine apparatus 500. In some embodi-
ments, the virtual machine apparatus of FIG. 5 may be imple-
mented within the virtual machine apparatus of FIGS. 1-2. In
such embodiments, any of the features and options described
above for FIGS. 1-2 may optionally be used with the virtual
machine apparatus of FIG. 5. Alternatively, the virtual
machine apparatus of FIG. 5 may be included within a similar
oran entirely different the virtual machine apparatus than that
of FIGS. 1-2. Moreover, the virtual machine apparatus of
FIG. 5 may perform the operations or methods of FIGS. 3-4,
or similar, or entirely different methods.

The virtual machine apparatus 500 includes a virtual
machine (VM) 501. In some embodiments, the VM may
attempt to execute a MOV to CR3 instruction (or other move
to control register instruction or store in control register
instruction) to attempt to store a value in a general-purpose
register specified by a source operand of the instruction in a
CR3 control register 508 indicated by the instruction. In some
embodiments, each process or task (e.g., each operating sys-
tem task) may have a different corresponding unique CR3
and/or page directory base value that references its corre-
sponding separated virtual address space page tables. When
there is a process or task switch, the operating system of a VM
may attempt to store the different page directory base value in
the CR3 register. The CR3 control register is one of a set of
control registers 507 of a processor 506. The CR3 control
register represents an example embodiment of paging struc-
ture identification (PSI) storage location and/or an example
embodiment of a page directory base register (PDBR). Alter-
natively, other PSI storage locations, PDBRs, and/or instruc-
tions may be used instead.

In some embodiments, a CR3 load exiting control 544 may
optionally be included to allow user configurable activation
and/or deactivation of CR3 load exiting logic 540, although
this is not required (e.g., it may be statically activated). In
some embodiments, the CR3 load exiting control may be a
single bit, although this is not required. The CR3 load exiting
control may have a first value (e.g., binary one) to activate or
enable the CR3 load exiting logic, or a second value (e.g.,
binary zero) to deactivate or disable the CR3 load exiting
logic. When activated the CR3 load exiting logic may be
operable to monitor and when appropriate prevent the MOV
to CR3 instruction from storing an illegal value in the CR3
register (i.e., prevent an illegal modification of the CR3 reg-
ister). As shown, in some embodiments, the CR3 load exiting
control may be included in a primary virtual machine execu-
tion control structure (PVMXCS) 542 of a set of virtual
machine control structures (VMCSs) 510, although this is not
required (e.g., it may be included elsewhere such as within the
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control registers of the processor). By way of example, the
CR3 load exiting bit may represent bit 15 in the PVMXCS.

The CR3 load exiting logic may be coupled or in commu-
nication with a set of one or more CR3 blacklist and/or
whitelist values 517. As shown in the illustration, the set of
CR3 blacklist/whitelist values may include a first CR3 black-
list/whitelist value 517-1 through an Nth CR3 blacklist/
whitelist value 517-N, where N may have a value similar to
those described elsewhere herein. As shown, in some embodi-
ments, the CR3 blacklist/whitelist values may be stored in the
PVMXCS, although this is not required. In some embodi-
ments, the CR3 blacklist/whitelist values may represent CR3
target values. In various embodiments, each of the CR3 black-
list/whitelist values may have 32-bits, 64-bits, or some other
number of bits (e.g., 16-bits, 128-bits, etc.). In some embodi-
ments, the number of the currently configured CR3 blacklist/
whitelist values 518 (e.g., a CR3 target count) may also
optionally be stored in the PVMXCS, although this is not
required.

The CR3 load exiting logic 540 includes an embodiment of
CR3 blacklist enforcement logic 516 and optionally CR3
whitelist enforcement logic 541. In the illustration the black-
list and whitelist enforcement logic are shown as separate,
although in another embodiment an integrated blacklist and
whitelist enforcement logic may include alternately both
blacklist and whitelist capabilities. An embodiment of a con-
trol 545 (e.g., one or more bits) may optionally be included to
allow a user to configure or control whether the set of CR3
blacklist/whitelist values 517 are to be interpreted as blacklist
or whitelist values. Alternatively, if a whitelist interpretation
is not supported then the aforementioned control may option-
ally be omitted (e.g., the processor may implicitly understand
to use a blacklist interpretation). In one particular embodi-
ment, the control 545 may be a single bit. The control 545 may
have a first configuration or value (e.g., binary one according
to one possible convention) to cause the CR3 blacklist
enforcement logic 516 to interpret the set of CR3 blacklist/
whitelist values 517 as blacklist values, or a second configu-
ration or value (e.g., binary zero according to one possible
convention) to cause the CR3 whitelist enforcement logic 541
to interpret the set of CR3 blacklist/whitelist values 517 as
whitelist values. In some embodiments, the control 545 may
be included in a secondary virtual machine execution control
structure (SVMXCS) 543 of the set of VMCS 510, although
this is not required (e.g., it may be included elsewhere such as
within the PVMXCS 542 or within the control registers of the
processor).

If the control 545 is configured to cause a blacklist inter-
pretation of the set of CR3 blacklist/whitelist values 517, then
the CR3 blacklist enforcement logic 516 may receive an
indication of the attempt by the VM to execute the MOV to
CR3 instruction. The CR3 blacklist enforcement logic may be
operable to determine whether or not to trap to the VMM
and/or cause a VM exit. As shown, in some embodiments, the
attempted modification of the CR3 register by the MOV to
CR3 instruction may be allowed without a trap to the VMM if
the value indicated by the source operand of the MOV to CR3
instruction does not equal or match any of the optionally
configured number of the set of CR3 blacklist/whitelist val-
ues. If the optional configured number of CR3 blacklist val-
ues is specified as N, then only the first N CR3 blacklist values
may be considered. If the optional number of CR3 blacklist
values is specified as N equal to zero (i.e., there are no black-
list values configured), then the attempt to modify the CR3
register is allowed regardless of the value to be stored in the
CR3 register. Conversely, the attempted modification of the
CR3 register by the MOV to CR3 instruction may be trapped
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to the VMM and/or a VM exit may be performed if the value
indicated by the source operand of the MOV to CR3 instruc-
tion equals or matches any of the set of CR3 blacklist/
whitelist values. The VMM may then determine whether to
allow or prevent the attempted modification.

Alternatively, if the control 545 is configured to cause a
whitelist interpretation of the set of CR3 blacklist/whitelist
values 517, then the CR3 whitelist enforcement logic 541
may receive an indication of the attempt by the VM to execute
the MOV to CR3 instruction.

As shown, in some embodiments, the attempted modifica-
tion of the CR3 register by the MOV to CR3 instruction may
be trapped to the VMM and/or a VM exit may be performed
if the value indicated by the source operand of the MOV to
CR3 instruction does not equal or match any of the set of CR3
whitelist values. If the optional configured number of CR3
whitelist values is specified as N, then only the first N CR3
whitelist values may be considered. If the optional number of
CR3 whitelist values is specified as N equal to zero (i.e., there
are no whitelist values configured), then the attempt to
modify the CR3 register may be trapped to the VMM and/or
a VM exit may be performed regardless of the value to be
stored in the CR3 register. In some embodiments, after the
trap to the VMM and/or the VM exit the VMM may determine
not to allow the attempted modification of the CR3 register
and may prevent the attempted modification. Conversely, the
attempted modification of the CR3 register by the MOV to
CR3 instruction may be allowed without a trap to the VMM or
a VM exit if the value indicated by the source operand of the
MOV to CR3 instruction equals or matches any of the set of
CR3 blacklist/whitelist values. As before, if the optional con-
figured number of CR3 whitelist values is specified as N, then
only the first N CR3 whitelist values may be considered.

This is just one detailed example embodiment of a suitable
virtual machine apparatus. Many additional variations on
these embodiments are contemplated. For example, other
embodiments may store the CR3 load exiting control, the set
of CR3 blacklist/whitelist values, the number of CR3 black-
list/whitelist values, the enable blacklist/whitelist interpreta-
tion control, or any combination thereof, in different ways
(e.g., differently among one or more VMCS and/or in control
registers of the processor. As another example, other embodi-
ments may utilize different types of instructions to modify a
PSI storage location.

FIG. 6 is a block flow diagram of an embodiment of a
method 650 of configuring a virtual machine apparatus. In
some embodiments, the operations and/or method of FIG. 6
may be performed by and/or within any ofthe virtual machine
apparatuses of FIG. 1, 2, or 5. In such embodiments, any of
the features and options described above for FIG. 1, 2, or §
may optionally be used with the method of FIG. 6 and/or any
of the features and options described for the method of FIG.
6 may optionally be used with the virtual machine appara-
tuses of FIG. 1, 2, or 5. Alternatively, the operations and/or
method of FIG. 6 may be performed by and/or within a
similar or an entirely different virtual machine apparatus.
Moreover, the virtual machine apparatuses of FIG. 1, 2, or 5
may perform operations and/or methods either the same as,
similar to, or entirely different than, those of FIG. 6.

Referring to the illustration, a virtual machine apparatus
may be configured to use a paging structure indication (PSI)
storage location modification monitoring mechanism, at
block 651. For example, in one particular embodiment, a CR3
load exiting control bit of a primary virtual machine execu-
tion control structure (PVMXCS) may be set to binary one.
The PSI storage location modification monitoring mecha-
nism may be configured to use a blacklist interpretation of a
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set of PSIvalues, at block 652. For example, in one particular
embodiment, a single bit control may be set or otherwise
configured to a predetermined value to enable the blacklist
interpretation. A configured number of PSI blacklist values
may be specified, at block 653. For example, in one particular
embodiment, a CR3 target count may be specified as a num-
ber N. Each of the configured number of PSI blacklist values
may be specified, at block 654. For example, in one particular
embodiment, the first N CR3 target count values may be
specified.

This is just one example embodiment of a suitable method
of configuring a virtual machine apparatus. Many variations
on the described method are contemplated. For example,
alternate embodiments may optionally perform the opera-
tions in a different order than illustrated, may overlap certain
operations, may combine certain operations, etc. As another
example, alternate embodiments may omit certain opera-
tions, such as, for example, omitting any one or more of the
operations at blocks 651, 652, or 653.

FIG. 7 is a block diagram of an embodiment of a CR3
control register 708. The CR3 control register represents one
example embodiment of a suitable PSI storage location and/
or PDBR. In a 32-bit mode the CR3 register may be 32-bits.
Ina 64-bit mode the CR3 register may be expanded to 64-bits.
The CR3 register may be used to store the physical address of
the base of the paging structure hierarchy. Bits 31:12 in 32-bit
mode, or bits 63:12 in 64-bit mode, may store the page direc-
tory base value. Only the most significant bits, less the lower
12 bits, of the base address may be specified. The lower 12
bits of the address may be assumed to be zero. The first paging
structure may thus be aligned to a page (e.g., a 4-KByte)
boundary. When using the physical address extension, the
CR3 register may include the base address of a page directory
pointer table. In one mode (e.g., [A-32e mode), the CR3
register may include the base address of the page map level 4
(PML4) table. An entry in a PML4 table contains the physical
address of the base of a page directory pointer table, access
rights, and memory management information. The base
physical address of the PML4 is stored in CR3. The CR3
register may be used to store two flags that control caching of
a paging structure in the processor’s internal data caches.
Bit-4 of the CR3 is a page-level cache disable (PCD) flag or
bit that may control caching on a page-by-page basis. Bit-3 of
the CR3 is a page-level write-through (PWT) flag or bit that
may control the write-through/writeback caching policy on a
page-by-page basis. The MOV to CR3 instruction may be
used to manipulate the contents of the CR3 register.

The blacklist interpretation of a set of PSI values as dis-
closed elsewhere herein may tend to offer certain advantages
for certain uses. For one thing, it may allow a set of PSI values
to be reserved or held back from one or more virtual
machines. For another thing, it may tend to offer improved
performance over a whitelist interpretation under certain con-
ditions. Commonly, under a whitelist interpretation, VMM
software may add certain process PSI, PBDR, or CR3 values
to the set of whitelist values in order to help improve perfor-
mance. For example, the system process, PID=4 in Windows
OS may be added to a CR3 target value VMCS field in order
to help improve performance by avoiding a VM exit. How-
ever, the VMM may need to monitor all attempted modifica-
tions of the PSI storage location, PDBR, or CR3 control
register even if only one particular process is interested.
Moreover, in some implementations it may be difficult or
costly to include all of the innocent PSI, PBDR, or CR3
values (i.e., for the processes not interested) in the whitelist
(e.g., into the CR3 target values VMCS fields) especially
when tens to hundreds of such processes are running. As a
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result, under a whitelist interpretation, attempts to modify the
PSI storage location, PBDR, or CR3 control register with
values that are not whitelist may tend to occur frequently and
as a result there may tend to be frequent or numerous VM
exits. This may tend to significantly reduce performance.
Generally, the more processes running with PSI, PDBR, or
CR3 values that are not included in the whitelist the greater
the performance degradation may tend to be.

However, under a blacklist interpretation of the PSI,
PDBR, or CR3 values, the performance degradation may be
reduced. Only the attempts to modify the PSI storage loca-
tion, PDBR, or CR3 control register to a value matching one
ofthe set of blacklisted values will resultin a VM exit. The set
of blacklist values may be updated at run time based on the
process or processes being monitored. This may tend to allow
VMM software to be able to run more efficiently by signifi-
cantly reducing the number of VM exits. In some embodi-
ments, this may be used along with and/or to extend guest
process-specific protection of resources. For example, it may
be used by the Trusted Memory Service Layer (TMSL), a
lightweight VMM based protection engine used in McAfee
DeepSafe Technology, to apply process-specific protection of
critical resources. For example, when a process is scheduled,
an attempted modification of a PSI storage location, PDBR,
or CR3 control register may be triggered. TMSL may then
establish an isolated memory sandbox by switching to a
specified extended page table view which has an appropriate
permission.

To avoid obscuring the description, relatively simple pro-
cessors and virtual machine apparatus have been shown and
described. In other embodiments, the processors and virtual
machine apparatus may optionally include other well-known
components. For example, the processors may include an
instruction fetch unit, an instruction scheduling unit, a branch
prediction unit, instruction and data caches, instruction and
data translation lookaside buffers, prefetch buffers, microin-
struction queues, microinstruction sequencers, bus interface
units, second or higher level caches, a retirement unit, a
register renaming unit, other components included in proces-
sors, and various combinations thereof. Embodiments may
have multiple cores, logical processors, or execution engines.
There are literally numerous different combinations and con-
figurations of components in processors, and embodiments
are not limited to any particular combination or configuration.
The processor may represent an integrated circuit or setof one
ormore semiconductor dies or chips (e.g., a single die or chip,
or a package incorporating two or more die or chips). In some
embodiments, the processor may represent a system-on-chip
(SoC).

Exemplary Core Architectures, Processors, and Computer
Architectures

Processor cores may be implemented in different ways, for
different purposes, and in different processors. For instance,
implementations of such cores may include: 1) a general
purpose in-order core intended for general-purpose comput-
ing; 2) a high performance general purpose out-of-order core
intended for general-purpose computing; 3) a special purpose
core intended primarily for graphics and/or scientific
(throughput) computing. Implementations of different pro-
cessors may include: 1) a CPU including one or more general
purpose in-order cores intended for general-purpose comput-
ing and/or one or more general purpose out-of-order cores
intended for general-purpose computing; and 2) a coproces-
sor including one or more special purpose cores intended
primarily for graphics and/or scientific (throughput). Such
different processors lead to different computer system archi-
tectures, which may include: 1) the coprocessor on a separate



US 9,223,602 B2

13

chip from the CPU; 2) the coprocessor on a separate die in the
same package as a CPU; 3) the coprocessor on the same die as
a CPU (in which case, such a coprocessor is sometimes
referred to as special purpose logic, such as integrated graph-
ics and/or scientific (throughput) logic, or as special purpose
cores); and 4) a system on a chip that may include on the same
die the described CPU (sometimes referred to as the applica-
tion core(s) or application processor(s)), the above described
coprocessor, and additional functionality. Exemplary core
architectures are described next, followed by descriptions of
exemplary processors and computer architectures.

Exemplary Core Architectures

In-Order and Out-of-Order Core Block Diagram

FIG. 8A is a block diagram illustrating both an exemplary
in-order pipeline and an exemplary register renaming, out-of-
order issue/execution pipeline according to embodiments of
the invention. FIG. 8B is a block diagram illustrating both an
exemplary embodiment of an in-order architecture core and
an exemplary register renaming, out-of-order issue/execution
architecture core to be included in a processor according to
embodiments of the invention. The solid lined boxes in FIGS.
8A-B illustrate the in-order pipeline and in-order core, while
the optional addition of the dashed lined boxes illustrates the
register renaming, out-of-order issue/execution pipeline and
core. Given that the in-order aspect is a subset of the out-of-
order aspect, the out-of-order aspect will be described.

In FIG. 8A, a processor pipeline 800 includes a fetch stage
802, a length decode stage 804, a decode stage 806, an allo-
cation stage 808, a renaming stage 810, a scheduling (also
known as a dispatch or issue) stage 812, a register read/
memory read stage 814, an execute stage 816, a write back/
memory write stage 818, an exception handling stage 822,
and a commit stage 824.

FIG. 8B shows processor core 890 including a front end
unit 830 coupled to an execution engine unit 850, and both are
coupled to amemory unit 870. The core 890 may be a reduced
instruction set computing (RISC) core, a complex instruction
set computing (CISC) core, a very long instruction word
(VLIW) core, or a hybrid or alternative core type. As yet
another option, the core 890 may be a special-purpose core,
such as, for example, a network or communication core,
compression engine, coprocessor core, general purpose com-
puting graphics processing unit (GPGPU) core, graphics
core, or the like.

The front end unit 830 includes a branch prediction unit
832 coupled to an instruction cache unit 834, which is
coupled to an instruction translation lookaside buffer (TLB)
836, which is coupled to an instruction fetch unit 838, which
is coupled to a decode unit 840. The decode unit 840 (or
decoder) may decode instructions, and generate as an output
one or more micro-operations, micro-code entry points,
microinstructions, other instructions, or other control signals,
which are decoded from, or which otherwise reflect, or are
derived from, the original instructions. The decode unit 840
may be implemented using various different mechanisms.
Examples of suitable mechanisms include, but are not limited
to, look-up tables, hardware implementations, programmable
logic arrays (PL.As), microcode read only memories (ROMs),
etc. In one embodiment, the core 890 includes a microcode
ROM or other medium that stores microcode for certain mac-
roinstructions (e.g., in decode unit 840 or otherwise within
the front end unit 830). The decode unit 840 is coupled to a
rename/allocator unit 852 in the execution engine unit 850.

The execution engine unit 850 includes the rename/alloca-
tor unit 852 coupled to a retirement unit 854 and a set of one
or more scheduler unit(s) 856. The scheduler unit(s) 856
represents any number of different schedulers, including res-
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ervations stations, central instruction window, etc. The sched-
uler unit(s) 856 is coupled to the physical register file(s)
unit(s) 858. Each of the physical register file(s) units 858
represents one or more physical register files, different ones
of'which store one or more different data types, such as scalar
integer, scalar floating point, packed integer, packed floating
point, vector integer, vector floating point, status (e.g., an
instruction pointer that is the address of the next instruction to
be executed), etc. In one embodiment, the physical register
file(s) unit 858 comprises a vector registers unit, a write mask
registers unit, and a scalar registers unit. These register units
may provide architectural vector registers, vector mask reg-
isters, and general purpose registers. The physical register
file(s) unit(s) 858 is overlapped by the retirement unit 854 to
illustrate various ways in which register renaming and out-
of-order execution may be implemented (e.g., using a reorder
buffer(s) and aretirement register file(s); using a future file(s),
a history buffer(s), and a retirement register file(s); using a
register maps and a pool of registers; etc.). The retirement unit
854 and the physical register file(s) unit(s) 858 are coupled to
the execution cluster(s) 860. The execution cluster(s) 860
includes a set of one or more execution units 862 and a set of
one or more memory access units 864. The execution units
862 may perform various operations (e.g., shifts, addition,
subtraction, multiplication) and on various types of data (e.g.,
scalar floating point, packed integer, packed floating point,
vector integer, vector floating point). While some embodi-
ments may include a number of execution units dedicated to
specific functions or sets of functions, other embodiments
may include only one execution unit or multiple execution
units that all perform all functions. The scheduler unit(s) 856,
physical register file(s) unit(s) 858, and execution cluster(s)
860 are shown as being possibly plural because certain
embodiments create separate pipelines for certain types of
data/operations (e.g., a scalar integer pipeline, a scalar float-
ing point/packed integer/packed floating point/vector integer/
vector floating point pipeline, and/or a memory access pipe-
line that each have their own scheduler unit, physical register
file(s) unit, and/or execution cluster—and in the case of a
separate memory access pipeline, certain embodiments are
implemented in which only the execution cluster of this pipe-
line has the memory access unit(s) 864). It should also be
understood that where separate pipelines are used, one or
more of these pipelines may be out-of-order issue/execution
and the rest in-order.

The set of memory access units 864 is coupled to the
memory unit 870, which includes a data TLB unit 872
coupled to a data cache unit 874 coupled to a level 2 (L2)
cache unit 876. In one exemplary embodiment, the memory
access units 864 may include a load unit, a store address unit,
and a store data unit, each of which is coupled to the data TL.B
unit 872 in the memory unit 870. The instruction cache unit
834 is further coupled to a level 2 (L.2) cache unit 876 in the
memory unit 870. The L.2 cache unit 876 is coupled to one or
more other levels of cache and eventually to a main memory.

By way of example, the exemplary register renaming, out-
of-order issue/execution core architecture may implement the
pipeline 800 as follows: 1) the instruction fetch 838 performs
the fetch and length decoding stages 802 and 804; 2) the
decode unit 840 performs the decode stage 806; 3) the
rename/allocator unit 852 performs the allocation stage 808
and renaming stage 810; 4) the scheduler unit(s) 856 per-
forms the schedule stage 812; 5) the physical register file(s)
unit(s) 858 and the memory unit 870 perform the register
read/memory read stage 814; the execution cluster 860 per-
form the execute stage 816; 6) the memory unit 870 and the
physical register file(s) unit(s) 858 perform the write back/
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memory write stage 818; 7) various units may be involved in
the exception handling stage 822; and 8) the retirement unit
854 and the physical register file(s) unit(s) 858 perform the
commit stage 824.

The core 890 may support one or more instructions sets
(e.g., the x86 instruction set (with some extensions that have
been added with newer versions); the MIPS instruction set of
MIPS Technologies of Sunnyvale, Calif.; the ARM instruc-
tion set (with optional additional extensions such as NEON)
of ARM Holdings of Sunnyvale, Calif.), including the
instruction(s) described herein. In one embodiment, the core
890 includes logic to support a packed data instruction set
extension (e.g., AVX1, AVX?2), thereby allowing the opera-
tions used by many multimedia applications to be performed
using packed data.

It should be understood that the core may support multi-
threading (executing two or more parallel sets of operations
orthreads), and may do so in a variety of ways including time
sliced multithreading, simultaneous multithreading (where a
single physical core provides a logical core for each of the
threads that physical core is simultaneously multithreading),
or a combination thereof (e.g., time sliced fetching and
decoding and simultaneous multithreading thereafter such as
in the Intel® Hyperthreading technology).

While register renaming is described in the context of
out-of-order execution, it should be understood that register
renaming may be used in an in-order architecture. While the
illustrated embodiment of the processor also includes sepa-
rate instruction and data cache units 834/874 and a shared .2
cache unit 876, alternative embodiments may have a single
internal cache for both instructions and data, such as, for
example, a Level 1 (L1) internal cache, or multiple levels of
internal cache. In some embodiments, the system may
include a combination of an internal cache and an external
cache that is external to the core and/or the processor. Alter-
natively, all of the cache may be external to the core and/or the
processor.

Specific Exemplary in-Order Core Architecture

FIGS. 9A-B illustrate a block diagram of a more specific
exemplary in-order core architecture, which core would be
one of several logic blocks (including other cores of the same
type and/or different types) in a chip. The logic blocks com-
municate through a high-bandwidth interconnect network
(e.g., aring network) with some fixed function logic, memory
1/0 interfaces, and other necessary /O logic, depending on
the application.

FIG. 9A is a block diagram of a single processor core,
along with its connection to the on-die interconnect network
902 and with its local subset of the Level 2 (1.2) cache 904,
according to embodiments of the invention. In one embodi-
ment, an instruction decoder 900 supports the x86 instruction
set with a packed data instruction set extension. An [.1 cache
906 allows low-latency accesses to cache memory into the
scalar and vector units. While in one embodiment (to simplify
the design), a scalar unit 908 and a vector unit 910 use sepa-
rate register sets (respectively, scalar registers 912 and vector
registers 914) and data transferred between them is written to
memory and then read back in from a level 1 (1) cache 906,
alternative embodiments of the invention may use a different
approach (e.g., use a single register set or include a commu-
nication path that allow data to be transferred between the two
register files without being written and read back).

The local subset of the .2 cache 904 is part of a global .2
cache that is divided into separate local subsets, one per
processor core. Each processor core has a direct access path to
its own local subset of the [.2 cache 904. Data read by a
processor core is stored in its [.2 cache subset 904 and can be
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accessed quickly, in parallel with other processor cores
accessing their own local L2 cache subsets. Data written by a
processor core is stored in its own [.2 cache subset 904 and is
flushed from other subsets, if necessary. The ring network
ensures coherency for shared data. The ring network is bi-
directional to allow agents such as processor cores, 1.2 caches
and other logic blocks to communicate with each other within
the chip. Each ring data-path is 1012-bits wide per direction.

FIG. 9B is an expanded view of part of the processor core
in FIG. 9A according to embodiments of the invention. FIG.
9B includes an [.1 data cache 906 A part of the L1 cache 904,
as well as more detail regarding the vector unit 910 and the
vector registers 914. Specifically, the vector unit 910 is a
16-wide vector processing unit (VPU) (see the 16-wide ALU
928), which executes one or more of integer, single-precision
float, and double-precision float instructions. The VPU sup-
ports swizzling the register inputs with swizzle unit 920,
numeric conversion with numeric convert units 922A-B, and
replication with replication unit 924 on the memory input.
Write mask registers 926 allow predicating resulting vector
writes.

Processor with Integrated Memory Controller and Graph-
ics

FIG. 10 is a block diagram of a processor 1000 that may
have more than one core, may have an integrated memory
controller, and may have integrated graphics according to
embodiments of the invention. The solid lined boxes in FIG.
10 illustrate a processor 1000 with a single core 1002A, a
system agent 1010, a set of one or more bus controller units
1016, while the optional addition of the dashed lined boxes
illustrates an alternative processor 1000 with multiple cores
1002A-N, a set of one or more integrated memory controller
unit(s) 1014 in the system agent unit 1010, and special pur-
pose logic 1008.

Thus, different implementations of the processor 1000 may
include: 1) a CPU with the special purpose logic 1008 being
integrated graphics and/or scientific (throughput) logic
(which may include one or more cores), and the cores
1002A-N being one or more general purpose cores (e.g.,
general purpose in-order cores, general purpose out-of-order
cores, a combination of the two); 2) a coprocessor with the
cores 1002 A-N being a large number of special purpose cores
intended primarily for graphics and/or scientific (through-
put); and 3) a coprocessor with the cores 1002A-N being a
large number of general purpose in-order cores. Thus, the
processor 1000 may be a general-purpose processor, copro-
cessor or special-purpose processor, such as, for example, a
network or communication processor, compression engine,
graphics processor, GPGPU (general purpose graphics pro-
cessing unit), a high-throughput many integrated core (MIC)
coprocessor (including 30 or more cores), embedded proces-
sor, or the like. The processor may be implemented on one or
more chips. The processor 1000 may be a part of and/or may
be implemented on one or more substrates using any of a
number of process technologies, such as, for example, BiC-
MOS, CMOS, or NMOS.

The memory hierarchy includes one or more levels of
cache within the cores, a set or one or more shared cache units
1006, and external memory (not shown) coupled to the set of
integrated memory controller units 1014. The set of shared
cache units 1006 may include one or more mid-level caches,
such as level 2 (L.2), level 3 (L3), level 4 (1.4), or other levels
of cache, a last level cache (LLC), and/or combinations
thereof. While in one embodiment a ring based interconnect
unit 1012 interconnects the integrated graphics logic 1008,
the set of shared cache units 1006, and the system agent unit
1010/integrated memory controller unit(s) 1014, alternative
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embodiments may use any number of well-known techniques
for interconnecting such units. In one embodiment, coher-
ency is maintained between one or more cache units 1006 and
cores 1002-A-N.

In some embodiments, one or more of the cores 1002A-N
are capable of multithreading. The system agent 1010
includes those components coordinating and operating cores
1002A-N. The system agent unit 1010 may include for
example a power control unit (PCU) and a display unit. The
PCU may be or include logic and components needed for
regulating the power state of the cores 1002A-N and the
integrated graphics logic 1008. The display unit is for driving
one or more externally connected displays.

The cores 1002A-N may be homogenous or heterogeneous
in terms of architecture instruction set; that is, two or more of
the cores 1002A-N may be capable of execution the same
instruction set, while others may be capable of executing only
a subset of that instruction set or a different instruction set.

Exemplary Computer Architectures

FIGS. 11-14 are block diagrams of exemplary computer
architectures. Other system designs and configurations
known in the arts for laptops, desktops, handheld PCs, per-
sonal digital assistants, engineering workstations, servers,
network devices, network hubs, switches, embedded proces-
sors, digital signal processors (DSPs), graphics devices,
video game devices, set-top boxes, micro controllers, cell
phones, portable media players, hand held devices, and vari-
ous other electronic devices, are also suitable. In general, a
huge variety of systems or electronic devices capable of
incorporating a processor and/or other execution logic as
disclosed herein are generally suitable.

Referring now to FIG. 11, shown is a block diagram of a
system 1100 in accordance with one embodiment of the
present invention. The system 1100 may include one or more
processors 1110, 1115, which are coupled to a controller hub
1120. In one embodiment the controller hub 1120 includes a
graphics memory controller hub (GMCH) 1190 and an Input/
Output Hub (IOH) 1150 (which may be on separate chips);
the GMCH 1190 includes memory and graphics controllers to
which are coupled memory 1140 and a coprocessor 1145; the
IOH 1150 is couples input/output (/O) devices 1160 to the
GMCH 1190. Alternatively, one or both of the memory and
graphics controllers are integrated within the processor (as
described herein), the memory 1140 and the coprocessor
1145 are coupled directly to the processor 1110, and the
controller hub 1120 in a single chip with the IOH 1150.

The optional nature of additional processors 1115 is
denoted in FIG. 11 with broken lines. Each processor 1110,
1115 may include one or more of the processing cores
described herein and may be some version of the processor
1000.

The memory 1140 may be, for example, dynamic random
access memory (DRAM), phase change memory (PCM), or a
combination of the two. For at least one embodiment, the
controller hub 1120 communicates with the processor(s)
1110, 1115 via a multi-drop bus, such as a frontside bus
(FSB), point-to-point interface such as QuickPath Intercon-
nect (QPI), or similar connection 1195.

In one embodiment, the coprocessor 1145 is a special-
purpose processor, such as, for example, a high-throughput
MIC processor, a network or communication processor, com-
pression engine, graphics processor, GPGPU, embedded pro-
cessor, or the like. In one embodiment, controller hub 1120
may include an integrated graphics accelerator. There can be
avariety of differences between the physical resources 1110,
1115 in terms of a spectrum of metrics of merit including
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architectural, microarchitectural, thermal, power consump-
tion characteristics, and the like.

In one embodiment, the processor 1110 executes instruc-
tions that control data processing operations of a general type.
Embedded within the instructions may be coprocessor
instructions. The processor 1110 recognizes these coproces-
sor instructions as being of a type that should be executed by
the attached coprocessor 1145. Accordingly, the processor
1110 issues these coprocessor instructions (or control signals
representing coprocessor instructions) on a coprocessor bus
or other interconnect, to coprocessor 1145. Coprocessor(s)
1145 accept and execute the received coprocessor instruc-
tions.

Referring now to FIG. 12, shown is a block diagram of a
first more specific exemplary system 1200 in accordance with
anembodiment of the present invention. As shown in FIG. 12,
multiprocessor system 1200 is a point-to-point interconnect
system, and includes a first processor 1270 and a second
processor 1280 coupled via a point-to-point interconnect
1250. Each of processors 1270 and 1280 may be some version
of the processor 1000. In one embodiment of the invention,
processors 1270 and 1280 are respectively processors 1110
and 1115, while coprocessor 1238 is coprocessor 1145. In
another embodiment, processors 1270 and 1280 are respec-
tively processor 1110 coprocessor 1145.

Processors 1270 and 1280 are shown including integrated
memory controller (IMC) units 1272 and 1282, respectively.
Processor 1270 also includes as part of'its bus controller units
point-to-point (P-P) interfaces 1276 and 1278; similarly, sec-
ond processor 1280 includes P-P interfaces 1286 and 1288.
Processors 1270, 1280 may exchange information via a point-
to-point (P-P) interface 1250 using P-P interface circuits
1278, 1288. As shown in FIG. 12, IMCs 1272 and 1282
couple the processors to respective memories, namely a
memory 1232 and a memory 1234, which may be portions of
main memory locally attached to the respective processors.

Processors 1270, 1280 may each exchange information

with a chipset 1290 via individual P-P interfaces 1252, 1254
using point to point interface circuits 1276, 1294, 1286, 1298.
Chipset 1290 may optionally exchange information with the
coprocessor 1238 via a high-performance interface 1239. In
one embodiment, the coprocessor 1238 is a special-purpose
processor, such as, for example, a high-throughput MIC pro-
cessor, a network or communication processor, compression
engine, graphics processor, GPGPU, embedded processor, or
the like.
A shared cache (not shown) may be included in either pro-
cessor or outside of both processors, yet connected with the
processors via P-P interconnect, such that either or both pro-
cessors’ local cache information may be stored in the shared
cache if a processor is placed into a low power mode.

Chipset 1290 may be coupled to a first bus 1216 via an
interface 1296. In one embodiment, first bus 1216 may be a
Peripheral Component Interconnect (PCI) bus, or a bus such
as a PCI Express bus or another third generation 1/O inter-
connect bus, although the scope of the present invention is not
so limited.

As shown in FIG. 12, various /O devices 1214 may be
coupled to first bus 1216, along with a bus bridge 1218 which
couples first bus 1216 to a second bus 1220. In one embodi-
ment, one or more additional processor(s) 1215, such as
coprocessors, high-throughput MIC processors, GPGPU’s,
accelerators (such as, e.g., graphics accelerators or digital
signal processing (DSP) units), field programmable gate
arrays, or any other processor, are coupled to first bus 1216. In
one embodiment, second bus 1220 may be a low pin count
(LPC) bus. Various devices may be coupled to a second bus
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1220 including, for example, a keyboard and/or mouse 1222,
communication devices 1227 and a storage unit 1228 such as
a disk drive or other mass storage device which may include
instructions/code and data 1230, in one embodiment. Further,
an audio I/0O 1224 may be coupled to the second bus 1220.
Note that other architectures are possible. For example,
instead of the point-to-point architecture of FIG. 12, a system
may implement a multi-drop bus or other such architecture.

Referring now to FIG. 13, shown is a block diagram of a

second more specific exemplary system 1300 in accordance
with an embodiment of the present invention. Like elements
in FIGS. 12 and 13 bear like reference numerals, and certain
aspects of FIG. 12 have been omitted from FIG. 13 in order to
avoid obscuring other aspects of FIG. 13.
FIG. 13 illustrates that the processors 1270, 1280 may include
integrated memory and 1/O control logic (“CL”) 1272 and
1282, respectively. Thus, the CL 1272, 1282 include inte-
grated memory controller units and include 1/O control logic.
FIG. 13 illustrates that not only are the memories 1232, 1234
coupled to the CL 1272, 1282, but also that I/O devices 1314
are also coupled to the control logic 1272, 1282. Legacy /O
devices 1315 are coupled to the chipset 1290.

Referring now to FIG. 14, shown is a block diagram of a
SoC 1400 in accordance with an embodiment of the present
invention. Similar elements in FIG. 10 bear like reference
numerals. Also, dashed lined boxes are optional features on
more advanced SoCs. In FIG. 14, an interconnect unit(s) 1402
is coupled to: an application processor 1410 which includes a
set of one or more cores 202A-N and shared cache unit(s)
1006; a system agent unit 1010; a bus controller unit(s) 1016;
an integrated memory controller unit(s) 1014; a set or one or
more coprocessors 1420 which may include integrated graph-
ics logic, an image processor, an audio processor, and a video
processor; an static random access memory (SRAM) unit
1430; a direct memory access (DMA) unit 1432; and a display
unit 1440 for coupling to one or more external displays. Inone
embodiment, the coprocessor(s) 1420 include a special-pur-
pose processor, such as, for example, a network or commu-
nication processor, compression engine, GPGPU, a high-
throughput MIC processor, embedded processor, or the like.

Embodiments of the mechanisms disclosed herein may be
implemented in hardware, software, firmware, or a combina-
tion of such implementation approaches. Embodiments of the
invention may be implemented as computer programs or pro-
gram code executing on programmable systems comprising
at least one processor, a storage system (including volatile
and non-volatile memory and/or storage elements), at least
one input device, and at least one output device.

Program code, such as code 1230 illustrated in FIG. 12,
may be applied to input instructions to perform the functions
described herein and generate output information. The output
information may be applied to one or more output devices, in
known fashion. For purposes of this application, a processing
system includes any system that has a processor, such as, for
example; a digital signal processor (DSP), a microcontroller,
an application specific integrated circuit (ASIC), or a micro-
processor.

The program code may be implemented in a high level
procedural or object oriented programming language to com-
municate with a processing system. The program code may
also be implemented in assembly or machine language, if
desired. In fact, the mechanisms described herein are not
limited in scope to any particular programming language. In
any case, the language may be a compiled or interpreted
language.

One or more aspects of at least one embodiment may be
implemented by representative instructions stored on a
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machine-readable medium which represents various logic
within the processor, which when read by a machine causes
the machine to fabricate logic to perform the techniques
described herein. Such representations, known as “IP cores”
may be stored on a tangible, machine readable medium and
supplied to various customers or manufacturing facilities to
load into the fabrication machines that actually make the logic
O Processor.

Such machine-readable storage media may include, with-
out limitation, non-transitory, tangible arrangements of
articles manufactured or formed by a machine or device,
including storage media such as hard disks, any other type of
disk including floppy disks, optical disks, compact disk read-
only memories (CD-ROMs), compact disk rewritable’s (CD-
RWs), and magneto-optical disks, semiconductor devices
such as read-only memories (ROMs), random access memo-
ries (RAMs) such as dynamic random access memories
(DRAMs), static random access memories (SRAMs), eras-
able programmable read-only memories (EPROMs), flash
memories, electrically erasable programmable read-only
memories (EEPROMs), phase change memory (PCM), mag-
netic or optical cards, or any other type of media suitable for
storing electronic instructions.

Accordingly, embodiments of the invention also include
non-transitory, tangible machine-readable media containing
instructions or containing design data, such as Hardware
Description Language (HDL), which defines structures, cir-
cuits, apparatuses, processors and/or system features
described herein. Such embodiments may also be referred to
as program products.

Emulation (Including Binary Translation, Code Morphing,
Etc.)

In some cases, an instruction converter may be used to
convert an instruction from a source instruction set to a target
instruction set. For example, the instruction converter may
translate (e.g., using static binary translation, dynamic binary
translation including dynamic compilation), morph, emulate,
or otherwise convert an instruction to one or more other
instructions to be processed by the core. The instruction con-
verter may be implemented in software, hardware, firmware,
ora combination thereof. The instruction converter may be on
processor, off processor, or part on and part off processor.

FIG. 15 is a block diagram contrasting the use of a software
instruction converter to convert binary instructions in a source
instruction set to binary instructions in a target instruction set
according to embodiments of the invention. In the illustrated
embodiment, the instruction converter is a software instruc-
tion converter, although alternatively the instruction con-
verter may be implemented in software, firmware, hardware,
or various combinations thereof. FIG. 15 shows a program in
a high level language 1502 may be compiled using an x86
compiler 1504 to generate x86 binary code 1506 that may be
natively executed by a processor with at least one x86 instruc-
tion set core 1516. The processor with at least one x86 instruc-
tion set core 1516 represents any processor that can perform
substantially the same functions as an Intel processor with at
least one x86 instruction set core by compatibly executing or
otherwise processing (1) a substantial portion of the instruc-
tion set of the Intel x86 instruction set core or (2) object code
versions of applications or other software targeted to run on
an Intel processor with at least one x86 instruction set core, in
order to achieve substantially the same result as an Intel
processor with at least one x86 instruction set core. The x86
compiler 1504 represents a compiler that is operable to gen-
erate x86 binary code 1506 (e.g., object code) that can, with or
without additional linkage processing, be executed on the
processor with at least one x86 instruction set core 1516.
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Similarly, FIG. 15 shows the program in the high level lan-
guage 1502 may be compiled using an alternative instruction
set compiler 1508 to generate alternative instruction set
binary code 1510 that may be natively executed by a proces-
sor without at least one x86 instruction set core 1514 (e.g., a
processor with cores that execute the MIPS instruction set of
MIPS Technologies of Sunnyvale, Calif. and/or that execute
the ARM instruction set of ARM Holdings of Sunnyvale,
Calif.). The instruction converter 1512 is used to convert the
x86 binary code 1506 into code that may be natively executed
by the processor without an x86 instruction set core 1514.
This converted code is not likely to be the same as the alter-
native instruction set binary code 1510 because an instruction
converter capable of this is difficult to make; however, the
converted code will accomplish the general operation and be
made up of instructions from the alternative instruction set.
Thus, the instruction converter 1512 represents software,
firmware, hardware, or a combination thereof that, through
emulation, simulation or any other process, allows a proces-
sor or other electronic device that does not have an x86
instruction set processor or core to execute the x86 binary
code 1506.

In the description and claims, the term “logic” may have
been used. As used herein, the term logic may include but is
not limited to hardware, firmware, software, or a combination
thereof. Examples of logic include integrated circuitry, appli-
cation specific integrated circuits, analog circuits, digital cir-
cuits, programmed logic devices, memory devices including
instructions, etc. In some embodiments, the logic may include
transistors and/or gates potentially along with other circuitry
components.

In the description and claims, the terms “coupled” and
“connected,” along with their derivatives, may have been
used. It should be understood that these terms are not intended
as synonyms for each other. Rather, in particular embodi-
ments, “connected” may be used to indicate that two or more
elements are in direct physical or electrical contact with each
other. “Coupled” may mean that two or more elements are in
direct physical or electrical contact. However, “coupled” may
also mean that two or more elements are not in direct contact
with each other, but yet still co-operate or interact with each
other.

The term “and/or” may have been used. As used herein, the
term “and/or” means one or the other or both (e.g., A and/or B
means A or B or both A and B).

In the description above, for the purposes of explanation,
numerous specific details have been set forth in order to
provide a thorough understanding of the embodiments of the
invention. It will be apparent however, to one skilled in the art,
that one or more other embodiments may be practiced with-
out some of these specific details. The particular embodi-
ments described are not provided to limit the invention but to
illustrate it. The scope of the invention is not to be determined
by the specific examples provided above but only by the
claims below. All equivalent relationships to those illustrated
in the drawings and described in the specification are encom-
passed within embodiments of the invention. In other
instances, well-known circuits, structures, devices, and
operations have been shown in block diagram form or without
detail in order to avoid obscuring the understanding of the
description.

Where considered appropriate, terminal portions of refer-
ence numerals have been repeated among the figures to indi-
cate corresponding or analogous elements, which may
optionally have similar or the same characteristics unless
specified or clearly apparent otherwise. In some cases, where
multiple components have been shown and described, they
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may be incorporated into a single component. In other cases,
where a single component has been shown and described, it
may be separated into two or more components. In the draw-
ings, arrows represent couplings and bidirectional arrows
represent bidirectional couplings.

Various operations and methods have been described.
Some of the methods have been described in a relatively basic
form in the flow diagrams, but operations may optionally be
added to and/or removed from the methods. In addition, while
the flow diagrams show a particular order of the operations
according to example embodiments, it is to be understood that
that particular order is exemplary. Alternate embodiments
may optionally perform the operations in different order,
combine certain operations, overlap certain operations, etc.
Many modifications and adaptations may be made to the
methods and are contemplated.

Some embodiments include an article of manufacture (e.g.,
a computer program product) that includes a machine-read-
able medium. The medium may include a mechanism that
provides, for example stores, information in a form that is
readable by the machine. The machine-readable medium may
provide, or have stored thereon, one or more, or a sequence of
instructions, that if executed by a machine causes the machine
to perform and/or results in the machine performing one or
operations, methods, or techniques disclosed herein. In some
embodiments, the machine-readable medium may include a
tangible non-transitory machine-readable storage media. For
example, the tangible non-transitory machine-readable stor-
age media may include a floppy diskette, an optical storage
medium, an optical disk, a CD-ROM, a magnetic disk, a
magneto-optical disk, a read only memory (ROM), a pro-
grammable ROM (PROM), an erasable-and-programmable
ROM (EPROM), an electrically-erasable-and-programmable
ROM (EEPROM), a random access memory (RAM), a static-
RAM (SRAM), a dynamic-RAM (DRAM), a Flash memory,
a phase-change memory, or the like. The tangible medium
may include one or more solid or tangible physical materials,
such as, for example, a semiconductor material, a phase
change material, a magnetic material, etc. Examples of suit-
able machines include, but are not limited to, computer sys-
tems, desktops, laptops, notebooks, netbooks, nettops,
Mobile Internet devices (MIDs), servers, network elements
(e.g., routers, switches, etc.) cellular phones, media players,
nettops, set-top boxes, video game controllers, and other elec-
tronic devices having one or more processors.

It should also be appreciated that reference throughout this
specification to “one embodiment”, “an embodiment”, or
“one or more embodiments”, for example, means that a par-
ticular feature may be included in the practice of the inven-
tion. Similarly, it should be appreciated that in the description
various features are sometimes grouped together in a single
embodiment, Figure, or description thereof for the purpose of
streamlining the disclosure and aiding in the understanding of
various inventive aspects. This method of disclosure, how-
ever, is not to be interpreted as reflecting an intention that the
invention requires more features than are expressly recited in
each claim. Rather, as the following claims reflect, inventive
aspects may lie in less than all features of a single disclosed
embodiment. Thus, the claims following the Detailed
Description are hereby expressly incorporated into this
Detailed Description, with each claim standing on its own as
a separate embodiment of the invention.

What is claimed is:

1. A method in a processor comprising: receiving, at on-die
logic of the processor, an indication of an attempt by a virtual
machine to modify a paging structure identification storage
location which is in a control register of the processor to have
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a given value, wherein the paging structure identification
storage location is to store a point of entry into a hierarchical
set of paging structures;

determining, at the on-die logic of the processor, that the
given value, which the virtual machine is attempting to
modify the paging structure identification storage loca-
tion to have, matches at least one of a set of one or more
blacklist values; and

trapping the attempt by the virtual machine to modify the
paging structure identification storage location to have
the given value to a virtual machine monitor.

2. The method of claim 1, further comprising configuring a
control to have a first configuration to enable a blacklist
interpretation for the set of the blacklist values, wherein the
control is also capable of having a second configuration to
enable a whitelist interpretation of the set of values.

3. The method of claim 2, wherein configuring the control
to have the first configuration comprises setting a single bit in
a virtual machine control structure to binary one.

4. The method of claim 1, wherein receiving comprises
receiving the indication of the attempt by the virtual machine
to execute a move to control register instruction to store the
given value indicated by a source operand of the instruction in
the paging structure identification storage location, which is a
control register of the processor that is indicated as a desti-
nation operand of the instruction.

5. The method of claim 1, further comprising the virtual
machine monitor preventing the attempt by the virtual
machine to modify the paging structure identification storage
location to have the given value.

6. The method of claim 1, further comprising:

accessing a configured number of the set of the blacklist
values; and comparing the given value with only the
configured number of the set of the blacklist values.

7. The method of claim 1, further comprising:

receiving a second indication of a second attempt by a
second virtual machine to modify the paging structure
identification storage location to have a second given
value;

determining that the second given value does not match any
of the set of the blacklist values; and

allowing the attempt by the second virtual machine to
modify the paging structure identification storage loca-
tion to have the second given value without trapping to
the virtual machine monitor.

8. An apparatus comprising:

at least one control register of a processor;

a paging structure identification storage location of the at
least one control register to store a point of entry into a
hierarchical set of paging structures; and

blacklist enforcement logic coupled with the paging struc-
ture identification storage location, the blacklist
enforcement logic being implemented in on-die logic of
the processor, the blacklist enforcement logic to receive
an indication of an attempt by a virtual machine to
modify the paging structure identification storage loca-
tion to have a given value, which is to represent a given
point of entry into the hierarchical set of paging struc-
tures, and to cause the attempt to be trapped to a virtual
machine monitor when the given value matches at least
one of a set of one or more blacklist values.

9. The apparatus of claim 8, wherein the blacklist enforce-
ment logic is to determine that a control has a first configu-
ration to enable a blacklist interpretation for the set of the
blacklist values, wherein the control is also capable of having
a second configuration to enable a whitelist interpretation of
the set of values.
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10. The apparatus of claim 9, further comprising whitelist
enforcement logic to interpret the set of the values as whitelist
values when the control has the second configuration.

11. The apparatus of claim 8, wherein the paging structure
identification storage location comprises a page directory
base register of the processor.

12. The apparatus of claim 8, wherein the blacklist enforce-
ment logic is to receive the indication of the attempt by the
virtual machine to execute a move to control register instruc-
tion to store the given value that is to be indicated by a source
operand of the instruction in the paging structure identifica-
tion storage location, which is of the at least one control
register of the processor that is to be indicated as a destination
operand of the instruction.

13. The apparatus of claim 8, wherein the blacklist enforce-
ment logic is to cause a virtual machine exit when the given
value matches said at least one of the set of one or more
blacklist values.

14. The apparatus of claim 8, wherein the blacklist enforce-
ment logic is to access a configured number of the set of the
blacklist values and is to compare the given value with only
the configured number of the set of the blacklist values.

15. The apparatus of claim 8, wherein the blacklist enforce-
ment logic is to receive a second indication of a second
attempt by a second virtual machine to modify the paging
structure identification storage location to have a second
given value and is to allow the second attempt when the
second given value does not match any of the set of the
blacklist values without causing a trap to the virtual machine
monitor.

16. A system comprising:

a processor, the processor having a paging structure iden-
tification storage location, wherein the paging structure
identification storage location comprises a control reg-
ister of the processor, and wherein the paging structure
identification storage location is to store a point of entry
into a hierarchical set of paging structures; and

a memory coupled with the processor, the memory to store
one or more virtual machine control structures, the one
or more virtual machine control structures to store:

a set of one or more blacklist values; and

a control to cause on-die blacklist enforcement logic of'the
processor to trap an attempt by a virtual machine to
modify the paging structure identification storage loca-
tion to have a given value to a virtual machine monitor
when the given value matches at least one of the set of
the blacklist values.

17. The system of claim 16, wherein the control is also
capable of having a configuration to enable a whitelist inter-
pretation of the set of the one or more values.

18. The system of claim 16, wherein the set of the one or
more blacklist values are in a primary virtual machine execu-
tion control structure, and wherein the control is in a second-
ary virtual machine execution control structure.

19. A method in a processor comprising: receiving an
instruction, the instruction indicating a given value as a
source operand and indicating a paging structure identifica-
tion storage location as a destination operand, wherein the
paging structure identification storage location comprises a
control register of the processor and is to store a point of entry
into a hierarchical set of paging structures;

determining, at on-die logic of the processor, whether the
given value matches any of a set of one or more blacklist
values; and

storing the given value in the paging structure identifica-
tion storage location if the given value does not match
any of the set of the one or more blacklist values; or
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not storing the given value in the paging structure identifi-
cation storage location if the given value matches at least
one of the set of the one or more blacklist values.

20. The method of claim 19, further comprising configur-
ing a control to have a first configuration to enable a blacklist
interpretation for the set of the one or more blacklist values,
wherein the control is also capable of having a second con-
figuration to enable a whitelist interpretation of the set of the
one or more values.

21. The method of claim 19, wherein receiving comprises
receiving a move to control register instruction from a virtual
machine, the move to control register instruction indicating a
page directory base register of a processor as the destination
operand, and further comprising transferring control from the
virtual machine to a virtual machine monitor if the given
value matches said at least one of the set of the one or more
blacklist values.
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